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under the condition that the constants BO, 52, w satisfy the relation (2.2) in [9]. Setting 

up the matrix h’, we can show that for the solutions B0 = 0, x the system in the first 

approximation is uncontrollable by the ignorable momenta Pa and p3, while for the 

solution 6 # 0, x is controllable. The steady-state motion, for which 6, = 0, is stable 

if condition (2.8) in [9] is fulfilled. Such a stable motion can be stabilized up to asymp- 
totic stability by forces of form (‘23) and minimize an integral of form (25). 
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We pose the problem of stabilization with respect to position coordinates and 

velocities of the steady-state motions of holonomic mechanical systems by 
means of forces acting only on the ignorable coordinates. The problem is 
reduced to the stabilization of the trivial solution of a certain system of dif- 
ferential equations, in which perturbations of the ignorable momenta are trea- 
ted as the controls. As an example we examine the asymptotic stabilization 
of the relative equilibrium positions of a gyrostat satellite in a circular orbit. 

1, We consider a holonomic scleronomous mechanical system with n degrees of 
freedom. Let q,. be the genera!ized coordinates, qr’, p,. (r == I,.... n) be the gene- 
ralized velocities and momenta, 1’ and 11 be the kinetic and potential energies, res- 



On stablllzatlon of steady-atate motion8 of mechanical systems 933 

pectively, H = T -/- n be the Hamiltonian function. We assume that besides the 

potential forces defined by potential II, nonpotential forces Q, (r = 1, . . . . n) also 
act on the system. We assume that qa (CZ = m + 1, . . . . n) are ignorable coordinates, 
i.e. 6’H / C%J~ = 0, and that Qi EZ 0 (i = 1, . . . . m). Everywhere subsequently the 

subscripts a and i range over the values indicated above. The Hamiltonian function 

has the form [l] 

Therefore, the system’s equations of motion are written as 

$ = i Cik (q) Pk + 5 ciil (q) Pa (1.1) 
k=l W=m+1 

dPi 

dt= 

If Qb: = 0, the system is found under the action only of the potential forces and can 
accomplish steady-state motions in which the position coordinates and the ignorable 
momenta qi and par remain constant, while the ignorable coordinates vary linearly with 

time. 

Suppose that there exists the steady-state motion qi = Qi”, pi = pi’, Pa = c,. 

We pose the problem of determining generalized forces Qa in such a way that this mo- 
tion would be asymptotically stable relative to a part of the variables Qi and pi [Z]. 

Without loss of generality we can assume that qi” = 0. The position momenta pi” are 
determined from the system of equations (1.1) in which Qi = 0, pa = c,. Let us ap- 

ply small initial perturbations to the system. Retaining for the values Qi in the perturbed 

motion the previous notation and letting El and q. denote, respectively, the perturbations 
of the position and the ignorable momenta, pi = pi” $- Et, pa = C, -i- Tja, after 
substituting Q and p into (1.1) we obtain the equations of perturbed motion 

‘2 = ui (qv E, 11) E : cik (q) (P/t’ + &) + i Cia (q) (Ca + Q) 
k=l a=m+i 

@j” + Ej) (Pk’ + Ek) - 

~%,I3 (e) 

a. !J=m+1 ‘(li x 

draldt = Qa (1.2) 

Thus, the problem posed of the asymptotic stabilization of the steady-state motion qi = 
const, pi 1 coast, pa = cod (i = 1. . . . . m; a = m + 1, . . . . n) relative 

to the position coordinates and momenta qi, pi with the aid of generalized forces ‘2, 
acting on the ignorable coordinates q a, is reduced to the problem of the asymptotic sta- 
bilization of the trivial solution qi = Ei = 71~ : 0 (i =- 1. . . . . I?(; a = m -I- 1, 

‘.., ?z) of system (1.2) with Qa = 0 relative to vi, pi (i = 1, . . . . k) with the aid 
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of suitably chosen forces Qn (U = TIZ + 1, , . //). 

2. We consider the system 

cEqi/dt = ui (qj, Ej, Yla), dEi/dt z T/i ((rj> tj, ?la) (3.1) 

The forces Q, are not fixed but are subject to determination, therefore, the qa in (2.1) 
can be regarded as controls chosen in such a way as to asymptotically stabilize the tri- 

vial solution of the system (2.1) of 2m equations being considered. If such a choice 

of qa = f, fqi, gi), f, (0, 0) = 0 is possible, the trivial solution of system (8.1) is 
asymptotically stable under such a choice of 11~. We define forces Qa by formulas 

(2.2) 

The quantity qa is determined from its own derivative to within an arbitrary constant, 
therefore, 

111 = fCz (Qi, Ei) -t t]a” - fa @iO, ki”) (23) 

Here (li”r $t”, IlaD are the initial perturbations of the position coordinates, the position 
momenta, and the ignorable momenta, respectively, If we assume that qio, ki”, 11~’ 

are sufficiently small (see [3], Sect. 74), the indicated choice (2.2) of forces Q, ensures 
the stability of the trivial solution of system (2.1) under condition (2.3) or, what is the 

(fa” = fa (qio7 Ei’)) 

Indeed, according to the assumption made, system (2.1) is asymptotically stable, while 

system (2.4) differs from system (2.1) by the presence of constantly acting perturbations 

which can be made arbitrarily small along with gi’, Ei”, ?&‘. 
In order to achieve the asymptotic stability of the trivial solution of system (2.1) we 

assume that the forces .Q, are impulsive [4]. by introducing the Dirac b-function and 
defining the forces acting on the ignorable coordinates by the formulas 

Qjl = 
cl!, 
x 4-m 6 (2 - t(t) (./X0 - rl,:) 

we obtain the required values of qa f, (qi, Ei) for the perturbations of the igno- 
rable momenta. 

Let us consider the first approximation of the equations of perturbed motion 

dq,‘dt =_ L,q -/ I,,; ;I- I:,q (2.5) 

fEg,& = L&q - L,“j i- &?I 
Here 

q” = Il&, (12, . . . . qrn (1, :* - 1151, L ..*3 urn II 

11 * =z //qwr 4rw?* *.*I %/I 
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PH m 
L,= - II I! aPjaQj i,j=l ’ 

a2H 
B1= - 

il II m n 

3Pi 8P, i==l, a=m+1 

L=ll~~_~*)l, B*=IIR1, h/f 

The values of the derivatives of the functions are taken at the point qi =I 0, Pi ’ 

pa = c,; here and subsequently the asterisk denotes transposition. The matrices 

and L, are symmetric, therefore, the characteristic equation of system (;?.5), 

0 

Z-2 

925 

G 
Pi 7 

b? 

(2.6) 

where & is the unit m X m matrix, does not change when a is replaced by - h and, 
consequently, contains only even powers of h. This signifies that the greatest common 

divisors of the i th-order minors D i (2.) of the characteristic matrix of system (2. S) , 

which are not identically equal to unity, have roots with nonnegative real parts. There- 
fore, to achieve asymptotic stability of the trivial solution of system (2.5) by a certain 
control 11, it is necessary [S] that 

rank jjB, LB, . . . . L2m--1 RI1 = 2m (2.7) 

But condition (2.7) is a necessary and sufficient condition for the complete controllabi- 
lity of system (2.5) (see [4]). Thus, the question of the asymptotic stabilization of the 

trivial solution of system (2.5) coincides with the question of the complete controllabi- 
lity of system (‘2.5). Consequently, if the solution Q = k -= 0 is asymptotically stabi- 
lizable, the system can be led to the origin in a finite time interval and in such a way 

that a certain preassigned functional is minimized on this motion [4]. For the complete 
system (2.1) condition (2.7) can be necessary only if among the roots of Eq. (2.6) there 

are roots with positive real parts [5]. Generally sneaking, the addition of higher-order 

terms can strengthen the stability in case rank 11 B, LB, . . . . L”‘n-lB jl < 2m, if it 

exists, up to asymptotic stability. Thus, we can state the following proposition. 
Theorem. In order that a certain steady-state motion qi = const (i =: 1, ..‘, m) 

can be asymptotically stabilized relative to the position coordinates and position mo- 
menta, qi. 1.~~ , by means of forces acting on the ignorable coordinates qa (o = rn, --k 
1, . ..) n).it is sufficient that the rank of the matrix (1 B, LB, . . . , L2”‘-lB 11, where 
matrices ~13 and L have the form (2.5), be equal to &n. This condition can be neces- 
sary only if among the roots of Eq, (2.6) there are roots with positive real parts. 

3. As an example of the proposed method for the asymptotic stabilization of steady- 
state motions of mechanical systems we consider the problem of the asymptotic stabili- 

zation of the relative equilibrium positions of a gyrostat satellite by means of flywheels. 
This problem is of independent interest, We assume that the center of gravity of the gyro- 
stat satellite describes a circular orbit in a Newtonian force field. We examine the re- 
stricted problem, neglecting the influence of the motion around the center of mass on 

the motion of the center of mass. As the origin of an inertial coordinate system O,Et] 5 
we take the center of attraction Or, and as the origin of a moving coordinate system 
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~x,x,x, we take the center of mass 0 of the satelite and we direct the axes along the 
principal central axes of inertia. We introduce one more moving coordinate system &yz, 
whose z-axis is directed along the straight line or@, the z-axis is directed to the side of 

motion of the center of mass along a staight line orthogonal to the z -axis and located 

in the orbital plane, the 9 -axis completes thex - and z-axes to a right trihedron, The 
position of the satellite’s body in the orbital coordinate system &ycyz is determined by 

the coordinates qi (i = i, 2, 3), as which we take the Euler angles 9, 8, rp. The 

cosines of the angles between the systems OSXJZ and ~~rxsss are given by 

COS (Xy Xi) zLZ C&it COS(?Jy Xi) z pi, cOS(Z, Xi) = ri 

a1 =coscpcos*-sincpsin$cos0 

a, = -sincpcos$--coscpsinJ!cos0, as = sin0sin+ 

p,=cosrpsir1Ft)+sincpcosIl,cos9 

Ps = -sin~~i~~+~s~~s~~se, ps-== -sin@costC, 

Tr = sinp,sin0, 7s = cosrpsin%, rs = co.58 

For simplicity of computation, in what follows we assume that the the gyrostat has 
three rotors directed along the principal axes of inertia. The angles of rotation of the 

rotors relative to the satellite’s body are denoted & (S = 1, 2, 3). The equations of 
motion of the gyrostat satellite in the @ry.z system, under the assumption that its cen- 
ter of mass moves in a circular orbit, can be written in the form of Hamiltonian equa- 

tions, where q1 = $,, q2 = 0, q3 = cp, q_I = a,, qj -~~ 6,, qfi :r 6, (n -= 6) 

Here wO is the angular velocity of revolution of the satellite along the orbit, As is the 
sth principal moment of inertia of the satellite. The matrix A has the following ele- 

ments : A = 11 a<j 1, aij = aji (i, i = 1, . . . . 6) 

61 = 
kl cod rp + hz sin2 cp ha - h, 

klka sin28 ’ ff12 = klh2Sil,0 sinvcoS(P 

‘OS Cl 
‘13 = - klh2 sin2 0 

(h, cos2 cp + h, sin2 cp), 

a66 
“13 

= - , a,, :: cz2ri .:: aqj = 
Iah3 

a@ = 0 

lls = A, - I,? (3 = 1, 2, 3) 

In these formulas 1, is the moment of inertia of the .? th rotor. The generalized nongra- 
vitational forces Qi (i =- 1 , 2, 3) are taken as zero in what follows. We see that the 
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coordinates &, (s - 1, 2, 3) do not occur in the expression for H , i.e.psi3 are igno- 
rable momenta. Therefore, to study the relative motions of the satellite we can make 

use of Eqs, (1.1) in which now m = 3. The set of relative eq~~brium positions was 
completely determined in [6]. We assume that Ar # Aa =#= Aa. We can show (‘71 that 

this set is defined by the equation 

Ato,?, + &Js;yz + A,o,y, = 0 (3.1) 

and that all the relative equilibrium positions of the gyrostat satellite fall into three 

classes [8]. 
3.1. One of the satellite’s principal axes of inertia, say Aa, is collinear with the 

3.2, One of the satellite’s principal axes of inertia, say At, is collinear with the 
axis Ox, 

9 = kn (k = 0, I), cp = SLTC (s = 0, 1), 0 < 8 < x 

3.3. None of the satellite’s principal axes of inertia is collinear with the axes of 

the orbital coordinate system, 

In the case being considered the reduced potential energy (the Routh potential) ]/v 
[l, 93 has the form [9] 

-w+ i /I$,” - + “0” j$ n,y,” + 00 5 PSfA - + i + 
I -1 S--l S==l s=1 J 

The quantities ql 8, rp, c,+~ (S = 1, 2, 3) must satisfy the equations 

CYW --= 
39 

CO,,~Q~~ (hi - h,) - 3~0” (4 - A.2) rif2 -t MO W2 - C&I) = 0 

From these equations, taking 3.1 into account, we obtain the following expressions for 

es+3 : 3 

s-=1 
(s = 1, 2, 3) 

In these formulas X is an arbitrary parameter and, consequemly. the constant values of 

the ignorable momenta cS.+s (s = 1, 2, 3) are determined nonuniquely at any relative 
equilibrium position. 

In the problem being examined the matrices L,, La, L,, B have, as can be shown, 
the following elements : 
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(i, k = 1, 2, 3; s = 1,. . . , 6) 

Zzll = - oOcos$, 

z1,2 = 
hl co9 cp -F- 112 sire” cp h, - hl 

hjla: sin’ B ’ 
Zl,Z = 

h&p sin 0 
sin ‘p cos q 

I,,” = - cos 0 
lllti2 sin2 0 

(h, COS2 cp -I- h, sin3 Cp) 

z,,2 - 
hl sin2 cp + h? cos? cp 

- 
h& 

I,,? = 
1~1 - h2 

hlhz sin 0 
sin ‘p cos (p cos Q 

1 
1,,2 zzx - L cos’ 0 163 ’ /zltL, sin’ 0 (h I cm2 cp + h, sin2 ‘p) 

Zi13 = - oo2x, ZLz3 = coo2 (sin $ cos II) ctg 8X - a sin $), ZlS3 = 0 

co.+ q 
z,,3 = - w 2 - 

sin” cp 
0 I ( 

- 
sill” U ti , 

3 cos 20 (A, sill2 (p + A, cos2 up - As)] 

X + 

C; sin up cos ‘p sin 8 cos 8 (A, - A,)} 
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If a certain relative equilibrium position of the satellite proves to be stabilizable, then, 
according to Sect. 2, this signifies that by rotating the rotors in a suitable manner we can 
achieve the asymptotic stability of the relative equilibrium position being considered. 

In other words, any sufficiently small perturbations of the relative equilibrium point be- 

ing stabilized can be “damped” by moments applied to the flywheels and the system led 
to an equilibrium state in a finite time interval. The possibility of asymptotic stabiliza- 

tion of the given stationary point is determined by the rank of the matrix 

C=(IB,LB,...,L”BII 

Let us investigate the rank of matrix C on families 1 and 2. For points of family 1 

we have 
det I/ bl, 6, b,, Lbl, L2bl, Lb,]] = 

i 27 W”’ 
_‘_ h~v&’ cos $ (A, - AZ) (A, - A$ 

det, Ij bl, b2 h,, Lhl, L2b,, Lb311 = 

i- 27 ,$jQ sin I# (f4, - A,)” (A, - As) 

We have either sin $ + 0 or cos 7c) # 0, therefore, all stationary points of family 
1 , which can be represented geometrically as a rotation through an arbitrary angle around 

one of the satellite’s principal axes of inertia, collinear with axis &, can be made asym- 

ptotically stable by moments applied to the flywheels. At points of family 2 

(let Jj bl, b,, b,, Lb,, L2bl, Lb,// = 

+ 1,y3zLlT sin 8 cos2 28 (A, - A,) (A, - A,)2 

Thus, all relative equilibrium positions of family 2, which are obtained one from the other 
by a rotation through an angle 0 around the axis Oxi, collinear with the axis Ox, can 
be asymptotically stabilized by moments applied to tne flywheels, except for the cases 
8 = n / 4, 3n i 4. We can show that in these cases the rank of matrix C equals four 

and, consequently, the points 8 = n / 4, 3n / 4 are uncontrollable. The possibility 
of stabilizing them is determined by terms of higher than the first order of smallness, 

since when cos2B = 0 the matrix L has, as can be shown after cumbersome calcula- 
tions, five eigenvalues with nonnegative real parts and the spectrum of the 4 X 4 mat- 

rix Q, indicated in [lo], cannot contain all of them. 
The author thanks V. V. Rumiantsev for posing the problem and for discussing the paper. 
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We consider the game problem of the encounter of a conflict-controlled phase 
point with a given set. We prove sufficient conditions for the successful com- 

pletion of a nonlinear game of encounter. These conditions are based on the 

idea of minimax extremal aiming [I]. The given aiming is realized here on 
the basis of absorption sets r2]. These sets are constructed with the aid of 

auxiliary motions generated by program controls which are represented by suit- 

able Bore1 measures in accordance with the well known techniques [33 of gene- 

ralized solutions of ordinary differential equations. 

1. Statement of the problem, We consider a controlled system described 

by the vector differential equation 

i = f (t, t, ZL, u) (1.1) 
Here z is the system’s IL-dimensional phase vector, . u and LP are r-dimensional vector 

controls of the first and second players, respectively, constrained by the conditions rL E: 
V, u E Q> where I-’ and Q are bounded closed sets. The function f (t, II‘, 11, 1’) is 
assumed continuous for all argument values to be considered and satisfies a Lipschitz 
condition in z in every bounded region of the space {.r}. Furthermore, the following 
conditions for the continuability of the solutions 5 It] for Eq. (1.1) are assumed to be 
fulfilled. Let F (t, x) =: co* {f (2, .z, ZL, v): u E l-‘, v E Q}, where co* {fj 


